Kato’s Square Root Problem in Banach Spaces
نویسندگان
چکیده
Abstract. Let L be an elliptic differential operator with bounded measurable coefficients, acting in Bochner spaces Lp(Rn;X) of X-valued functions on Rn. We characterize Kato’s square root estimates ‖ √ Lu‖p h ‖∇u‖p and the H-functional calculus of L in terms of R-boundedness properties of the resolvent of L, when X is a Banach function lattice with the UMD property, or a noncommutative Lp space. To do so, we develop various vector-valued analogues of classical objects in Harmonic Analysis, including a maximal function for Bochner spaces. In the special case X = C, we get a new approach to the Lp theory of square roots of elliptic operators, as well as an Lp version of Carleson’s inequality.
منابع مشابه
A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملExistence and uniqueness of solutions for a periodic boundary value problem
In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.
متن کاملOn Best Proximity Points in metric and Banach spaces
Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...
متن کاملNew hybrid method for equilibrium problems and relatively nonexpansive mappings in Banach spaces
In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is presented for finding a common element of the solution set of an equilibrium problem and the set of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given and the numerical behaviour of the sequences generated by this algorithm is compared with several existence...
متن کاملCoorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to the Sphere
This paper is concerned with the construction of generalized Banach frames on homogeneous spaces. The major tool is a unitary group representation which is square integrable modulo a certain subgroup. By means of this representation, generalized coorbit spaces can be defined. Moreover, we can construct a specific reproducing kernel which, after a judicious discretization, gives rise to atomic d...
متن کامل